

SD2S Einstellanleitung U/f-Betrieb

Schulungsunterlagen

P-TD-0000223.3 2013-08-27

Copyright

Originalbetriebsanleitung, Copyright © 2013 SIEB & MEYER AG.

Alle Rechte vorbehalten.

Diese Anleitung darf nur mit einer ausdrücklichen schriftlichen Genehmigung der SIEB & MEYER AG kopiert werden. Das gilt auch für Auszüge.

Marken

Alle in dieser Anleitung aufgeführten Produkt-, Schrift- und Firmennamen und Logos sind gegebenenfalls Marken oder eingetragene Marken der jeweiligen Firmen.

SIEB & MEYER weltweit

Bei Fragen zu unseren Produkten oder technischen Rückfragen wenden Sie sich bitte an uns.

SIEB & MEYER AG Auf dem Schmaarkamp 21 21339 Lüneburg Deutschland

Tel.: +49 4131 203 0 Fax: +49 4131 203 2000 support@sieb-meyer.de http://www.sieb-meyer.de

SIEB & MEYER Asia Co. Ltd. 4 Fl, No. 532, Sec. 1 Min-Sheng N. Road Kwei-Shan Hsiang 333 Tao-Yuan Hsien Taiwan

Tel.: +886 3 311 5560 Fax: +886 3 322 1224 <u>smasia@ms42.hinet.net</u> <u>http://www.sieb-meyer.com</u> SIEB & MEYER Shenzhen Trading Co. Ltd. Room 306, 3rd Floor, Building A1, Dongjiaotou Industrial Area , Houhai Dadao, Shekou, Nanshan District, Shenzhen City, 518067 P.R. China

Tel.: +86 755 2681 1417 / +86 755 2681 2487 Fax: +86 755 2681 2967 sm.china.support@gmail.com http://www.sieb-meyer.cn

SIEB & MEYER USA 3975 Port Union Road Fairfield, OH 45014 USA

Tel.: +1 513 563 0860 Fax: +1 513 563 7576 info@sieb-meyerusa.com http://www.sieb-meyer.com

_		
	-	_

1	Einleitung	<u>5</u>
1.1	U/f-Struktur	<u>5</u>
2	Geräteanschluss und Softwarestart	. <u>7</u>
2.1	Software installieren	7
2.2	SD2S anschließen und einschalten	. 7
2.3	Software starten	7
3	Parametersatz erstellen	<u>9</u>
4	Reglerparameter	<u>13</u>
4.1	U/f-Kennlinie	<u>13</u>
4.2	Kompensation	<u>13</u>
4.2.1	Lastkompensation	<u>14</u>
4.2.2	Schlupfkompensation	<u>15</u>
4.3	Geschwindigkeitsregler	<u>15</u>
4.4	Stromregler	<u>16</u>
4.4.1	Strombegrenzung	<u>16</u>
4.4.2	Haltefunktion	<u>17</u>
4.4.3	Stromgeführter Anlauf / stromgeführtes Bremsen	. <u>19</u>
4.4.4	Fangen	<u>19</u>
4.5	Drehzahlsollwerte	<u>21</u>
5	Fehlerbehandlung	<u>23</u>

Inhalt

Einleitung

Diese Kurzanleitung beschreibt die Inbetriebnahme eines SD2S als U/f-Umrichter.

Die Antriebsfunktion "HSPAM / UF " ermöglicht einen einfachen sensorlosen Betrieb von Asynchronmotoren. Je nach Gerätetyp können dabei Ausgangsfrequenzen von bis zu 2000 Hz bzw. 10000 Hz ausgegeben werden.

- SD2, SD2S mit fester Zwischenkreisspannung:
- max. Ausgangsfrequenz = 2000 Hz
 SD2T, SD2S mit geregelter Zwischenkreisspannung:
- max. Ausgangsfrequenz = 10000 Hz

Bei der U/f-Steuerung handelt es sich um ein rein gesteuertes System ohne Lage- und Drehzahlmessung. Da kein Messsystem vorhanden ist, erscheint in der Anzeige der aktuellen Motordrehzahl immer der jeweilige Drehzahlsollwert.

Optional kann die aktuelle Motordrehzahl über ein entsprechendes Messsystem ausgewertet werden und zur Kontrolle der Zustände "Sollwert Erreicht" und "Drehzahl Null" herangezogen werden.

Abb. 1: Struktureller Aufbau der U/f-Steuerung

Einleitung

2

Geräteanschluss und Softwarestart

Lesen Sie die Hardware- und Softwarebeschreibung zu Ihrem Gerät und beachten Sie die darin enthaltenen Sicherheitshinweise.

2.1 Software installieren

Installieren Sie die neueste Version der Software *drivemaster2* auf Ihrem PC. Diese ist im Download-Bereich der SIEB & MEYER-Webseite unter <u>www.sieb-meyer.de</u> zu finden. (Bitte melden Sie sich als Gast an.)

2.2 SD2S anschließen und einschalten

Folgende Anschlüsse müssen mindestens verdrahtet werden:

- Einspeisung (einphasig/dreiphasig)
- Motorphasen (U, V, W, PE)
- OSSD (Sicherheitsschaltung)
 - Anschluss ohne Sicherheitsfunktion:
 X10 (0362140xy 0362143xy): Pin 1 und Pin 3 zu Pin 6 brücken
 X43 (0362145xy 0362148xy): Pin 1 und Pin 3 zu Pin 5 brücken
 - Kommunikation mit dem PC (z. B. USB-Schnittstelle)
- externer Ballastwiderstand, wenn vorhanden

Wir empfehlen zusätzlich den digitalen Eingang D-IN2 mit einer Schnellhaltfunktion zu verdrahten.

✤ Schalten Sie nun das Gerät ein.

Der Gerätetreiber wurde bereits mit der Softwareinstallation kopiert. Nach dem Einschalten wird der Treiber für den SD2S automatisch vom Betriebssystem ausgewählt.

Bei USB-Verbindung kann die Treiberinstallation einige Zeit dauern. Wenn der Teiber korrekt installiert wurde, erscheint im Gerätemanager "LibUsb-Win32 SM2 TUSB3410".

2.3 Software starten

- Starten Sie die Software *drivemaster2*.
- Wählen Sie im Startbildschirm die Option "Verbindung zum Gerät einrichten" und stellen Sie die Kommunikation ein.
- Bestätigen Sie mit der Schaltfläche "Geräte suchen + verbinden".
- ✓ Der angeschlossene SD2S wird von der Software gefunden und erscheint als Online-Gerät in der Oberfläche.

Je nach Auslieferungszustand des Gerätes gibt es nun die folgenden Möglichkeiten:

- 1. Das Gerät ist vollständig parametriert (inkl. Reglerabgleich) ausgeliefert worden.
 - a) Das voreingestellte Projekt wird aus dem Gerät geladen. Das Gerät ist betriebsbereit.
- 2. Das Gerät wurde ohne Parametersatz ausgeliefert.
 - a) Der Parametersatz muss entsprechend dem Datenblatt des Motorherstellers erstellt werden. Die Reglerparameter müssen eingestellt werden.

b) Ein vorhandener Parametersatz muss in das Gerät geschrieben werden.

Parametersatz erstellen

Wenn das Gerät ohne Parametersatz ausgeliefert wurde, wird nach der Gerätesuche das folgende Fenster angezeigt.

Ĵ≖ SIEB & MEYER AG - drivemaster2	- V1.8 - [Build 1	64 - 21.07.2010]	
Projekt Bearbeiten Lader Einstellungen	Extras Hilfe	ser Level: Admin 🛛 🍕	
🔃 🖈 🖻 🔁 19 📲 🕅	🤑 PJ 🛎 🖾	Pow: 0 - Drv: 0 A P00:	
🔠 Geräteübersicht 🔎 Diagnose 📔			
SD2: 0 - 036 21 40DC		Übersicht	•
E- ij Drv: U.A - U36 21 40DC - A		leerer Parametersatz	
		Der Parametersatz ist nicht initialisiert . Um einen gültigen Parametersatz zu erhalten können Sie	
		😥 Eine Parameterdatei öffnen	
		🔇 Einen Parametersatz erstellen	
		Parametersatz	
		🕌 Hinzufügen 🛛 📑 Inhalt kopieren	
		👼 Löschen 👔 Inhalt einfügen	
		Auswahl Parametersatz	
		Digitale Eingänge 🖞 Übernehmen	
Projekt: Online Projekt	Host: localhost	Server: S&M USB Server V2.0 (GUI) Pow: 0	·Drv: 0 A · Online

- Klicken Sie auf die Schaltfläche "Einen Parametersatz erstellen …". Ein entsprechender Assistent wird geöffnet. Dieser führt Sie schrittweise durch die Parametersatzerstellung.
- Schritt 1 Grundgerät: Der Basisantrieb wird von der Software erkannt.
- Schritt 2 Basisdaten: Wählen Sie die Antriebsfunktion "HSPAM / UF" aus.
- Schritt 3 Motorauswahl: Wählen Sie die Option "Motordaten einzeln eingeben" aus und bearbeiten Sie das Feld "Motortyp".

Schritt 4 – Motordaten: Geben Sie die Werte aus dem Datenblatt des Motorherstellers ein. Für die Parametrierung der U/f-Steuerung werden die hervorgehobenen Motordaten (fett gedruckt) zwingend benötigt.

. Motorauswahl	4. Motordaten	5. Mess	system
Geben Sie die einzelnen Moto Antriebes norwendig und muss	rparameter ein. Jeder Paramete s gesetzt werden.	r ist für den Betrieb des	
Motorparameter			
Nennstrom	3.54	Aeff	Â
Spitzenstrom	14.14	Aeff	-
I²t-Zeit	5.0	s	=
Minimale Drehzahl	0.00	U/min	
Maximale Drehzahl	60000.00	U/min	
Anzahl Polpaare	1		
Massenträgheitsmoment	0.0010	kgm ² /1000	

- Schritt 5 Motormesssystem: Wählen Sie ein Motormesssystem aus (z. B. sensorlos).
- Schritt 6 Regler: Geben Sie die Parameter der U/f-Kennlinie ein.

SIEB & MEYER AG - drivemast	er2	×
Einen	neuen Antrieb anle	gen
5. Messsystem	6. Regler	7. Betriebsart
Geben Sie die Nennsp Die Spannung muss in U/F-Kennlinie Nennspannung 229.81 Vac Min.Spannung	annung für die UF-Kennlinie aus dem Datenblat einem Bereich von 5. 10 Vac bis 707. 11 Vac lieg Leerlaut	t ihres Motors ein. en. fabsenkung auf
5.00 Vac 5	Hz Nennfrequenz 1000 Hz Nenndrehzahl 59000 U/mir ion ♥ Nennschlupf 1000 U/mir	f Max.Drehzahl 60000 U/min
🌒 Hilfe	🔶 Zurück 🛛 V	Weiter 🔶 🗙 Abbruch

- Min. Spannung: Zunächst wird die Minimalspannung der U/f-Kennlinie parametriert. Diese Spannung wird auch bei kleinsten Drehzahlen nicht unterschritten und sorgt dafür, dass stets genügend Magnetisierung vorhanden ist.
- Nennfrequenz / Nenndrehzahl: Anschließend wird im Nennpunkt des Motors der Nennschlupf bestimmt. Wenn gewünscht, kann der Nennschlupf für die Schlupfkompensation genutzt werden.
- Leerlaufabsenkung in %: Abschließend kann noch die Absenkung der Spannung im Leerlauf parametriert werden. Hieraus ergibt sich auch automatisch die Lastkompensation, welche bei Nennbelastung die Absenkung wieder aufhebt.
- Schritt 7 Betriebsart: Die Betriebsart ist immer "Geschwindigkeitsmodus 1". Wählen Sie die Ansteuerung entsprechend der Anbindung.
- ↔ Wenn Sie die Parametrierung mit dem Assistenten abgeschlossen haben, wählen Sie das Menü "Lader → Parameter in Antrieb schreiben " oder die Schaltfläche
 - 👯. Die Parameter werden nun in das Gerät geladen.

Falls die Systemsoftware in Ihrem Gerät nicht zur Parametrierung passt, wird eine entsprechende Meldung angezeigt. Führen Sie in diesem Fall ein Update der Systemsoftware wie im Dialogfenster beschrieben durch.

Zu jeder neuen Version der *drivemaster2*-Software wird immer die neueste Systemsoftware mitgeliefert.

4 Reglerparameter

Nach der Parametrierung mit dem Assistenten ist der Antrieb für den Betrieb des Motors ausreichend eingestellt. Abhängig von der jeweiligen Anwendung müssen aber noch zusätzliche Einstellungen in den Reglerparametern vorgenommen werden.

Im folgenden werden die Reglereinstellungen für den U/f-Betrieb erläutert.

4.1 U/f-Kennlinie

Bei der U/f-Steuerung wird die Motorspannung proportional zur Drehfeldfrequenz des Motors über eine Tabelle eingestellt. Die Ausgangsspannung ist abhängig vom aktuellen Drehzahlsollwert und wird automatisch auf den richtigen Wert gesetzt. Hierbei wird auch ein Schwanken der Versorgungsspannung berücksichtigt und ausgeglichen.

Es gibt die folgenden beiden Möglichkeiten, die U/f-Kennlinie zu parametrieren:

- 1. Es ist nur die Nennspannung bei Nennfrequenz gegeben. In diesem Fall liefert der Parameterassistent die passende Kennlinie. Weitere Eingaben sind nicht nötig.
- Es ist eine vollständige U/f-Kennlinie gegeben. In diesem Fall kann diese U/f-Kennlinie über die entsprechende Parameterseite in der *drivemaster2*-Software eingegeben werden.

Achten Sie darauf, dass die Spannung der U/f-Kennlinie als AC-Spannung eingegeben werden muss.

4.2 Kompensation

Auf der Parameterseite "Kompensation" werden Last- und Schlupfkompensation eingestellt.

4.2.1 Lastkompensation

Für die Kompensation können Sie die folgenden Modi einstellen:

- FC2-Lastkompensation: kompatibel zu älteren Geräte und zur FC2-Serie
- Dieser Modus sollte nur zur Übernahme alter Parametersätze genutzt werden.
- Lastkompensation: Standardlastkompensation

Bei der U/f-Steuerung kann zwischen der FC2-Lastkompensation und der Standardlastkompensation gewechselt werden. Die Werte werden entsprechend umgerechnet.

Die Standardlastkompensation bietet durch die Leerlaufabsenkung die Möglichkeit, die U/f-Kennlinie im Leerlauf auf einen bestimmten Prozentsatz abzusenken. Durch die Lastanhebung kann die U/f-Kennlinie bei Nennlast wieder auf 100 % angehoben werden.

Beispiele

Absenkung im Leerlauf

- Leerlaufabsenkung auf: 80 %
- Lastanhebung um: 20 %
- Kennlinie im Leerlauf = 80 %
- Kennlinie im Nennpunkt = 100 %

Absenkung im Leerlauf mit Überkompensation

- Leerlaufabsenkung auf: 80 %
- Lastanhebung um: 40 %
- Kennlinie im Leerlauf = 80 %
- Kennlinie im Nennpunkt = 120 %

Bei Überkompensation durch die Lastanhebung wird eine höhere Spannung ausgegeben als in der U/f-Kennlinie angegeben ist.

4.3

4.2.2 Schlupfkompensation

Die Schlupfkompensation dient dazu, den Schlupf eines Asynchronmotors gesteuert auszugleichen.

Die passende Einstellung ergibt sich aus den im Parmeterassistenten eingegebenen Daten (Nennschlupf, Nennstrom und Leistungsfaktor cos phi).

Alternativ kann der Schlupf auch mit einem externen Messgerät bestimmt werden. Gehen Sie hierzu wie folgt vor:

- Belasten Sie den Antrieb mit Nennlast.
- Zeichnen Sie den Wirkstrom des Antriebs auf und messen Sie extern die reale Drehzahl.
- Tragen Sie beide Werte in die Eingabefelder unter dem Punkt "Schlupfkompensation" ein.

Geschwindigkeitsregler

Der Geschwindigkeitsregler kann nur genutzt werden, wenn ein Geschwindigkeitsmesssystem vorhanden ist. Dieses Messsystem muss zunächst auf der Seite "Motormesssystem" korrekt parametriert werden.

Der Geschwindigkeitsregler ist als Bypassregler ausgelegt. Er kann durch seine Struktur nur mit einer Verstärkung (Kp) zwischen 0.0 und 1.0 arbeiten.

Da die zur Verfügung stehenden Messsysteme über eine geringe Dynamik verfügen, können nur sehr große Nachstellzeiten (Tn) verwendet werden. Diese liegen im Bereich von 128 ms bis 1000 ms.

Filterzeit und Nachstellzeit sollten idealerweise gleich groß sein.

4

4.4 Stromregler

Über die Parameterseite "Stromregler" wird die Strombegrenzung angegeben und eine Haltefunktion gewählt. Zudem kann das stromgeführter Anfahren und Bremsen sowie die Fangschaltung aktiviert und konfiguriert werden.

Str	romregler 🧛
I-Soll Begrenzung 8.00 Aeff Haltefunktion Haltestrom 1.40 Aeff	Verstärkung Kp 3.000 Veff/Aeff Nachstellzeit Tn 1.000 ms Stromistwert
Stromgeführter Anlauf / Bremsen Image: Anlauffunktion aktiv Anlaufstrom Umschaltschwelle 2.00 Aeff 500.000 U/min	Fangen Fangen aktiv Nur in Sollwertrichtung Nach jedem Austrudeln Bei jedem Regler Ein Fangstrom Fangzeit 1.20 Aeff 1000 ms
	Strongeführter Anlauf / Bremsen

4.4.1 Strombegrenzung

Die U/f-Steuerung arbeitet ohne Stromregler (außer im Stillstand). Damit ist keine herkömmliche Strombegrenzung verfügbar. Der Scheinstrom wird trotzdem über die Beschleunigungs- und Bremsrampen indirekt begrenzt.

Bei der indirekten Strombegrenzung wird abhängig vom aktuellen Strom die aktuelle Beschleunigung angepasst. Dadurch wird indirekt die Solldrehzahl, die Drehfrequenz, die Spannung und damit letztendlich der Strom begrenzt.

Die Begrenzungskennlinie für die Beschleunigung sieht wie folgt aus:

Der Parameter "Begrenzung" gibt I_{max} an. Der Wert ergibt sich aus den im Parmeterassistenten eingegebenen Daten und kann ggf. angepasst werden.

Beispiel

Beim Bremsen kehrt sich das Schema um	i und es	wird ggf.	beschleunigt:
---------------------------------------	----------	-----------	---------------

Betriebszustand	∣ < 0,75 · I _{max}	$0,75 \cdot I_{max} < I < I_{max}$	I _{max} < I < 1,25 ⋅ I _{max}	∣ > 1,25 · I _{max}
Beschleunigung	volle Beschleunigung	reduzierte Beschleu- nigung	reduziertes Bremsen	volles Bremsen
konstante Dreh- zahl	konstante Drehzahl	konstante Drehzahl	reduziertes Bremsen	volles Bremsen
Bremsen	volles Bremsen	reduziertes Bremsen	reduzierte Beschleu- nigung	volle Beschleunigung

4.4.2 Haltefunktion

Um den Motor im Stillstand (0 Hz) in seiner Lage zu halten, kann zwischen den Modi Haltestrom oder Haltespannung gewählt werden. Beide Modi sind mit oder ohne Zeitbegrenzung wählbar.

Haltestrom

Im Modus "Haltestrom" wird über einen PI-Stromregler eine Spannung am Motor eingestellt, welche den gewünschten Strom erzeugt. 4

Die Parametrierung des Stromreglers ist unkritisch und kann immer mit einer Verstärkung Kp von 3 V/A und einer Nachstellzeit Tn von 10 ms vorgegeben werden.

Haltestrom mit Zeitbegrenzung

Im Modus "Haltestrom" wird über einen PI-Stromregler eine Spannung am Motor eingestellt, welche den gewünschten Strom erzeugt.

Die Parametrierung des Stromreglers ist unkritisch und kann immer mit einer Verstärkung Kp von 3 V/A und einer Nachstellzeit Tn von 10 ms vorgegeben werden.

Der Haltestrom wird nach Erreichen des Sollwertes Null auf eine bestimmte Zeit begrenzt. Er dient in diesem Fall nur dazu, den Motor sicher zum Stillstand zu bringen.

Haltespannung

Im Modus "Haltespannung" wird über einen festen Spannungswert ein Strom erzeugt. Der Haltestromregler ist in diesem Modus nicht aktiv, d. h. es existiert keine Strombegrenzung (auch nicht indirekt).

Die Haltespannung kann den Motor dauerhaft in seiner Lage halten.

Haltespannung mit Zeitbegrenzung

Im Modus "Haltespannung mit Zeitbegrenzung" wird über einen festen Spannungswert ein Strom erzeugt. Der Haltestromregler ist in diesem Modus nicht aktiv, d. h. es existiert keine Strombegrenzung (auch nicht indirekt).

Die Haltespannung wird nach Erreichen des Sollwertes Null auf eine bestimmte Zeit begrenzt. Sie dient in diesem Fall nur dazu, den Motor sicher zum Stillstand zu bringen.

ACHTUNG

Haltespannung zu groß

Wird der Wert für die Haltespannung zu groß gewählt, fließt ein zu großer Strom im Motor und es kann zu Geräteschäden kommen. Eine der folgende Fehlermeldungen erscheint:

- E45 Kurzschluss Leistungsendstufe
- E29 Motorauslastung zu hoch (Motor I²t)
- E30 Auslastung Leistungsendstufe zu hoch (I²t)

Wenn der Wert für die Haltespannung Ihres Motors ungewiss ist, nutzen Sie die Funktion "Haltestrom".

4.4.3

Stromgeführter Anlauf / stromgeführtes Bremsen

Im unteren Drehzahlbereich ist die mittels U/f-Kennlinie erreichte Spannung oft nicht ausreichend, um den vollen Magnetisierungsstrom einzuprägen. Deshalb kann beim Beschleunigen und Bremsen im unteren Drehzahlbereich ein fester Anlaufstrom eingeprägt werden.

Der Anlaufstrom sollte zwischen Magnetisierungsstrom und Nennstrom liegen und kann frei gewählt werden. Zusätzlich muss eine Schwelle angegeben werden, ab der auf die U/f-Spannungskennlinie umgeschaltet wird.

CH1 V N-Soll 18621.7 RPM CH3 🔽 Is • 2.8 Arm CH2 V Ueff-Motor CH4 🔽 Iw • • 110.2 \ Anlaufstrom Bremsstrom WAN'N -6 -7 -8 -9 -10 1.000 2.000 3.000 4,000 5.000 6.000 7.000

Stromgeführtes Anlaufen und Bremsen beim U/f-Betrieb:

4.4.4 Fangen

Wenn der Regler aktiviert wird während die Spindel trudelt, wird die Spindel zunächst auf Null abgebremst. Im schlimmsten Fall wird der Fehler E45 "Kurzschluss Leistungsendstufe" ausgelöst. Um dieses Verhalten zu verhindern, kann die Spindel "eingefangen" werden.

"Fangen" bedeutet, dass die aktuelle Drehzahl bestimmt wird und von hier aus die neue Zieldrehzahl angefahren werden kann.

Typische Werte:

- Fangstrom = 50 % des Nennstroms
- Fangzeit = 1000 ms

Ist ein Messsystem parametriert, wird die aktuelle Drehzahl nicht gesucht sondern direkt vom Messsystem übernommen. Für das Suchen wird daher keine Zeit benötigt.

Damit die Funktion "Fangen" richtig ausgeführt wird, muss der Stromregler korrekt parametriert sein.

Die folgenden Konfigurationen für das "Fangen" sind möglich:

Konfiguration	Beschreibung	t _{min}	t _{max}
□ Nur in Sollwertrichtung	Die Spindel wird nach jedem Aktivieren der Endstufe "eingefangen".	0	2 × t _{fangen}

4

Konfiguration	Beschreibung	t _{min}	t _{max}
O Nach jedem Austrudeln			
ei jedem Regler Ein			
□ Nur in Sollwertrichtung	Die Spindel wird "eingefangen", wenn sie zu-	0	2 × t _{fangen}
Nach jedem Austrudeln	vor mit Austrudeln gestoppt wurde.		
\bigcirc Bei jedem Regler Ein			
☑ Nur in Sollwertrichtung	Die Spindel wird nach jedem Aktivieren der	0	t _{fangen}
O Nach jedem Austrudeln	Endstute "eingetangen". Die aktuelle Drehzahl wird dabei nur in Richtung des aktuellen Soll-		
ei jedem Regler Ein	wertes gesucht.		
☑ Nur in Sollwertrichtung	Die Spindel wird "eingefangen", wenn sie zu-	0	t _{fangen}
Nach jedem Austrudeln	vor mit Austrudeln gestoppt wurde. Die aktuel-		
O Bei jedem Regler Ein	tuellen Sollwertes gesucht.		

S

Die Spindel trudelt beim Ausschalten des Reglers nur aus, wenn auf der Parameterseite "Antriebssteuerung" unter "Antriebsverhalten bei … "Regler Aus" Kommando" die Reaktion "Ausschalten (Austrudeln des Motors)" ausgewählt ist.

Bitte deaktivieren Sie die Motorrelais nach dem Ausschalten des Reglers erst, wenn die Meldung "M01 – Meldung Leistungsendstufe aktiv" zurückgesetzt wurde.

Ablauf der Funktion "Fangen":

4.5

Drehzahlsollwerte

Gerateubersicht Pol: drive PO0: drive PO0: drive PO0: drive PO0: drive PO0: drive PO0: drive PO0: drive PO0: drive PO0: drive	Diagnose	Drehz	ahlsollwerte	
Analogsignale Analogs	N-Soll Richtungssperre Positiv V Drehrichtung	Ausblendgeschw. 1 1000.00 U/min Ausblendbereich 1 1000.00 U/min Ausblendgeschw. 2 0.00 U/min Ausblendbereich 2 0.00 U/min	Max. Begrenzung 6000.00 U/min Min. Begrenzung 0.00 U/min NMin-Mode N-Soll = 0 💌	N-Soll Regler Beschleunigungsrampe 6000 ms Bremsrampe 6000 ms Schnellhaltrampe 6000 ms

Auf der Seite "Drehzahlsollwerte" wird der Sollwertgenerator parametriert.

Drehrichtung

Der Parameter gibt die Drehrichtung für rotative Motoren an:

- Drehung im Uhrzeigersinn = CW (Clock Wise)
- Drehung gegen den Uhrzeigersinn = CCW (Counter Clock Wise)

Die in der Software angegebene Drehrichtung sollte stets mit der tatsächlich Drehrichtung des Motors übereinstimmen. Ist dies nicht der Fall, müssen zwei Motorphasen getauscht werden.

Richtungssperre

Wenn nur eine Drehrichtung des Motors zulässig ist, kann die andere Drehrichtung über diesen Parameter gesperrt werden. Folgende Einstellungen sind möglich:

- Keine: Sowohl positive als auch negative Drehzahlen werden gefahren.
- Positiv: Positive Drehzahlen werden nicht gefahren.
- Negativ: Negative Drehzahlen werden nicht gefahren.

Ausblendbänder

Mit Hilfe der Ausblendbänder kann verhindert werden, dass bestimmte Geschwindigkeiten dauerhaft gefahren werden. Diese können z. B. Resonanzen einer Maschine sein.

Beispiel

- Ausblendgeschwindigkeit: 10000 U/min
- Ausblendbereich: 500 U/min
- max. zulässige Geschwindigkeit unterhalb der Ausblendgeschwindigkeit = 9500 U/min
- min. zulässige Geschwindigkeit oberhalb der Ausblendgeschwindigkeit = 10500 U/min

Drehzahlvorgaben innerhalb des Ausblendbandes (9500 – 10500 U/min) werden unterdrückt:

Max. Begrenzung

Der Parameter gibt die maximal mögliche Drehzahl in Umdrehungen pro Minute an.

Min. Begrenzung

Der Parameter gibt die minimal mögliche Drehzahl in Umdrehungen pro Minute an.

NMin-Mode

Über diesen Parameter kann eingestellt werden, welche Solldrehzahl ausgegeben wird, wenn eine Zieldrehzahl unterhalb der Minimaldrehzahl angewählt wurde.

Rampen

Die Rampen dienen zur Begrenzung der Beschleunigung über den Geschwindigkeitsbzw. Drehzahlsollwert und werden in *Millisekunden* angegeben. Der Parameter stellt eine Zeit dar, die benötigt wird, um aus dem Stand die Geschwindigkeits- bzw. Drehzahlskalierung zu erreichen. Eine Rampe von z. B. 6000 ms ergibt bei einer Drehzahlskalierung von 60000 1/min eine maximale Beschleunigung von 167 1/s² bzw. 10000 1/min

S

- Beschleunigungsrampe
 Der Parameter gibt die Zeit f
 ür eine Beschleunigung von 0 auf die Begrenzungsdrehzahl/-geschwindigkeit an: (|v (t + Δt)| - |v (t)| > 0)
- Bremsrampe Der Parameter gibt die Zeit f
 ür einen Bremsvorgang auf Drehzahl/Geschwindigkeit 0 an: (|v (t + Δt)| - |v (t)| < 0)
- Schnellhalterampe Der Parameter gibt die Zeit f
 ür einen Schnellhaltebremsvorgang auf Drehzahl/ Geschwindigkeit 0 an: (|v (t + Δt)| - |v (t)| < 0)

Im Bereich von 0 bis 6,25 % der Drehzahlskalierung werden die Rampenzeiten automatisch verdoppelt, d. h. es wird nur die halbe Beschleunigung bzw. Verzögerung gefahren.

4

5

Fehlerbehandlung

Folgende Probleme können bei der Inbetriebnahme entstehen:
--

Code	Beschreibung	Mögliche Ursache	Abhilfe
-	Drehrichtung Spindel/Motor falsch	Motorphasen falsch verdrahtet	Verdrahtung der Motorphasen (U, V, W) nach Datenblatt korrigieren
		Motormesssystem falsch verdrahtet	Verdrahtung des Motormesssystems nach Datenblatt korrigieren
		Software: Drehrichtungsbit falsch gesetzt	Parameter "Drehrichtung" (CW/ CCW) in <i>drivemaster2</i> ändern (Para- meterseite "Geschwindigkeitsregler")
		Software: Digitaler Eingang "Ge- schwindigkeitsrichtung" ist gesetzt	digitalen Eingang "Geschwindig- keitsrichtung" korrigieren
		analoger Geschwindigkeitssollwert falsch	analogen Geschwindigkeitssollwert korrigieren
		Software: analoger Geschwindig- keitssollwert invertiert	analoger Geschwindigkeitssollwert: Parameter "Inverter" korrigieren (Pa- rameterseite "Analoge Eingänge")
E31	Drehzahlfehler bzw. Schlupf zu groß (nur bei Synchronmotoren)	Software: Einstellungen für Fehler E31 falsch	Parameter "E31 - Abschaltschwelle" anpassen (Parameterseite "Fehler")
		Motorphasen falsch verdrahtet	Verdrahtung der Motorphasen (U, V, W) nach Datenblatt korrigieren
		Motormesssystem falsch verdrahtet	Verdrahtung des Motormesssystems nach Datenblatt korrigieren
E34 - -	Netzteilladeüberwachung -> Haupt- spannung zu niedrig	Beim Einschalten steht SAFETY an.	Sicherstellen, dass SAFETY vor dem Einschalten des Gerätes aus ist.
	Digitale Ein-/Ausgänge funktionieren nicht.	Spannungsversorgung der Ein-/ Ausgänge fehlt.	Stecker X15, Pin 9 an 24 V anschlie- ßen
	Analoge Ausgänge funktionieren nicht.	Analoge Ausgänge sind überlastet.	Sicherstellen, dass analoge Ausgän- ge mit max. 1 mA belastet werden.

